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Abstract: In this work the well-known Falkner-Skan equation is considered.
This equation appears in the modelling of various phenomena in physics and
engineering. The He’s variational iteration method which is a very efficient
tool for solving different kinds of problems, is employed for solving this
problem. Some other approaches are introduced to compare the efficiency of
the new procedure. Several test examples are given to show the advantages
of the present method over other existing techniques.

Keywords: He’s variational iteration method, Falkner-Skan boundary
layer equation, Padé approximation.

1 Introduction

The Variational Iteration Method (VIM) was proposed by Ji-Huan He in
1991. This method is an effective and flexible procedure for solving lin-
ear and nonlinear problems and has been applied for solving various kinds
of problems in science and engineering. For instance, linear and nonlinear
system of ordinary differential equations, Blasius equation [46], problems in
calculus of variations [50], Helmholtz equation [31] and Thomas-Fermi equa-
tion [11] are solved by this method. For more information about variational
iteration method see [27, 32, 33, 34, 13, 41, 42, 44, 45, 14, 47, 48, 54, 55,
16, 15, 18, 19, 17, 51]. Also authors of [49] investigated the convergence of
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the VIM. With the best of our knowledge [49] is the only published research
work about the convergence of VIM.

Now consider the general differential equation:

Lu + Nu = g(x, t),

where L and N are linear and nonlinear operators respectively and g(x, t) is
the inhomogeneous term of equation. According to the VIM, we construct
an iteration formulation in the following way:

un+1 = un +
∫ x

0
λ(Lun(s) + Nũn(s)− g(s, t))ds, (1.1)

where λ is Lagrange multiplier which should be identified. The function
ũn is restricted variation such that δũn = 0. The subscript n denotes the
nth approximation, in fact (1.1) is a correction functional. The Lagrange
multiplier λ is found in a way that the variation of the right hand side in
(1.1) be zero.

In 1931 Falkner and Skan [23] developed similarity transformation method
for the two-dimensional wedge flows on a two-dimensional incompressible
laminar boundary layer equation. They introduced a one-dimensional, third
order, nonlinear boundary value problem named ”Falkner-Skan equation”
given by

d3f

dη3
+ f

d2f

dη2
+ β[1− (

df

dη
)2] = 0, 0<η<∞, (1.2)

subject to the boundary conditions

f(0) = δ,
df

dη
(0) = 0,

df

dη η→∞
= 1, (1.3)

where parameters β > 0 and δ are known. This ordinary differential equation
appears in the modelling of boundary layer problems for the two-dimensional
steady and incompressible laminar flows passing a wedge in a common area
of interest. Uniqueness and detailed analysis of solution to the Falkner-Skan
equation are investigated in [35, 52]. We state the following result about
existence and uniqueness of this problem which can be derived from some
well-known results in [25];

Theorem 1.1. (a) Eq. (1.2) with (1.3) and the side condition 0 < f ′(η) < 1
has a unique solution for β ≥ 0. Moreover, the solution satisfies in

f ′′(η) > 0, for η ∈ (0,∞). (1.4)
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(b) There exist β∗ ∈ (−∞, 0) such that (1.2) and (1.3) with 0 < f ′(η) < 1
has at least one solution for β ∈ (β∗, 0) and the solutions are not unique and
satisfy (1.4).
(c) Eq. (1.2) subject to (1.3) with 0 < f ′(η) < 1 has a unique solution for
β = β∗ and the solution satisfies (1.4).
(d) Eq. (1.2) with (1.3) and 0 < f ′(η) < 1 has no solution for β < β∗.

The interested reader can see [35] for some new results on existence and
uniqueness of the solutions of the Falker–Skan equation.

This type of boundary layer problems can’t be solved directly in a closed
form generally. Therefore, the researchers emphasize on the numerical meth-
ods to solve it. The first numerical method for the problem was presented
by [12, 24]. In [3, 4] some finite difference methods were used for solving
this problem.

Shooting methods also were implemented by authors of [7, 30]. As
some other investigations we can mention the differential transformation
method [28], Homotopy perturbation method [53], finite element method [5],
pseudo-spectral method [21, 36], Adomian decomposition method [1, 22].
For more information about this equation, the interested reader can see [9,
29]. Authors of [39] used analysis of asymptotic behavior of the solution
at ∞ to solve this equation. Salama [38] proposed a one-step technique of
the order five to solve this equation. Recently author of [6] developed the
automatic differentiation to find the solution of the Falker–Skan equation.
Using this method which is neither numerical or symbolic, a Taylor series so-
lution is constructed for the initial value problems by calculating the Taylor
coefficients recursively.

This paper uses another approach. The direction of this paper is the
study of Falkner–Skan equation via He’s variational iteration method. The
rest of the current paper is arranged as follows:

Section 2 contains some approaches suggested to transform the given
equation to some other forms to make it easier to handle the model. In Sec-
tion 3 we aim to apply the variational iteration method (VIM) in a direct
manner to establish f ′′(0) for Falkner–Skan equation, then some modifi-
cation of it are given to refine the solution of Falkner–Skan equation. In
Section 4, some illustrative examples are given. Section 5 ends this report
with some concluding remarks.
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2 The Falkner-Skan boundary layer equation

Nature of Falkner–Skan boundary layer equation refers to the flow of an
incompressible viscous fluid over a wedge. In fact this equation describes
the class of similar laminar flows in boundary layer on a permeable or im-
permeable wall, for example flows along curvilinear profiles such as airplane
wings.

Assume u and v are respective velocity components in the x and y di-
rections of the fluid flow, ν is the kinematic viscosity of the fluid and w is
the reference velocity at the edge of the boundary layer that depends on x.

The continuity and momentum equations that refer to conservation of
mass and conservation of momentum laws of movement of the fluid over
wedge, are respectively:

∂u

∂x
+

∂v

∂y
= 0, u

∂u

∂x
+ v

∂u

∂y
= w

dw

dx
+ ν

∂2u

∂y2
,

with boundary conditions:

at y = 0 : u = v = 0, as y →∞ : u → w(x) = w∞(
x

L
)m,

where w∞ is the mean stream velocity, L is the length of the wedge and m
is the Falkner–Skan power-low parameter. Now the stream function ψ(x, y)
can be introduced such that:

u =
∂ψ

∂y
, and v = −∂ψ

∂x
. (2.1)

By substituting this definition in the momentum equation, then integrating
equations (2.1) and introducing a similarity variable and similarity function
by:

η =

√
1 + m

2
w∞
νLm

y

x
1−m

2

, f(η) =
√

1 + m

2
Lm

νw∞
ψ

x
1+m

2

,

and substituting them into the transformed momentum equation, we get the
well-known Falkner–Skan equation

d3f

dη3
+ f

d2f

dη2
+ β[1− (

df

dη
)2] = 0, 0<η<∞, (2.2)

subject to the boundary conditions

f(0) = 0,
df

dη
(0) = 0,

df

dη η→∞
= 1, (2.3)
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where β = 2m
m+1 [28, 43]. But we can assume f(0) = δ where the mass-

transfer parameter δ sets the measure for the mass flow rate through the wall
boundary direction, positive value determines flow with suction and negative
with injection through the wall boundary. The zero value corresponds to
flow along impermeable wall with zero mass transfer.

It is customary to replace the third equation of (2.3) with the condition:

df

dη
(η∞) = 1,

for some sufficiently large values of η∞ which are determined experimentally.
Notice that this equation is defined in domain [0, η∞]. Now the following

transform is made:
ξ =

η

η∞
, g =

f

η∞
.

This leads to the following equations:

df

dη
=

dg

dξ
, η∞

d2f

dη2
=

d2g

dξ2
, η∞2 d3f

dη3
=

d3g

dξ3
.

And consequently we have

d3g

dξ3
+ η2

∞g
d2g

dξ2
+ η2

∞β[1− (
dg

dξ
)2] = 0, 0<ξ<1, (2.4)

subject to the boundary conditions

g(0) =
δ

η∞
,

dg

dξ
(0) = 0,

dg

dξ
(1) = 1. (2.5)

Also we refer the interested reader to [1, 9, 3, 4, 7, 5, 6, 12, 21, 25, 24,
30, 28, 35, 43, 36, 52, 53, 46] for more information on this equation and its
derivation.

3 The variational iteration method

The VIM will be implemented for the transformed Falkner–Skan equation
(2.4). Consider the following correction functional:

gn+1(ξ) = gn(ξ) +
∫ ξ

0
λ(g′′′n (s) + η2

∞g̃n(s)g̃′′n(s) + η2
∞β(1− g̃′2n (s)))ds. (3.1)
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According to [27] we have λ = −1
2(s− ξ)2 and therefore, we have

gn+1(ξ) = gn(ξ)−
∫ ξ

0

1
2
(s− ξ)2(g′′′n (s) + η2

∞gn(s)g′′n(s) + η2
∞β(1− g′2n (s)))ds,

(3.2)
with a suitable choice of g0. Let us point out the main hurdle in the solution
of the Falkner–Skan equation is the absence of the second derivative g′′(0).
In fact all of the higher derivatives of g(ξ) (solution of equation) at ξ = 0
will be determined by g′′(0) using Taylor expansion [37].

The initial term g0(ξ) usually is considered as a polynomial. For the
present problem we consider the initial term as

g0(ξ) = g(0) + ξg′(0) +
ξ2

2!
g′′(0)− ξ3

3!
βη2

∞,

or equivalently

g0(ξ) =
δ

η∞
+

ξ2

2!
α− ξ3

3!
βη2

∞,

where α = g′′(0) is unknown. For a sufficiently large value of n, gn(ξ) is an
accurate approximation of g(ξ). The unknown α is found in a way that

g′n(1) = 1,

which results a nonlinear equation.
Unfortunately as we will see in next section, VIM becomes weaker by

increasing η∞. So aside from VIM some modifications of it can be im-
plemented to overcome this demerit. Now two modifications of VIM are
introduced:

A) For large η∞ such as η∞ = 6 the results for α via VIM are inaccurate.
Then we apply Padé approximation on the obtained gn as Wazwaz did in
[47]. Moreover the diagonal approximant is the most accurate approximant.
Therefore we will construct only the diagonal approximations [M/M]. This
causes that convergence region increases. We assume that [L/M] denotes
the Padé approximation to gn(t) as is defined in Eq. (15) of the paper [10].

B) Errors of solution for large η∞ is very high. Now a suitable refinement
for VIM is used. In this way at first α = g′′(0) is computed by VIM. By
the substitution of α in g0, the initial guess of MVIM is constructed. This
causes that the maximum value of the residual of Falkner–Skan equation
decreases, although α = g′′(0) is the same as before.
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4 Numerical results and discussion

In this section the VIM is implemented, as was described in the previous
section, for values of β and η∞ and g(0) that were reported in [2]. These
values are showed in Examples 1-9:

Example 1.
In this example the Falkner–Skan equation is considered for g(0) = 0 and
β = 0.5 and η∞ = 2 ¤
Example 2.
In this example the Falkner–Skan equation is considered for g(0) = 0 and
β = 0.5 and η∞ = 4 ¤
Example 3.
In this example the Falkner–Skan equation is considered for g(0) = 0 and
β = 0.5 and η∞ = 6 ¤
Example 4.
In this example the Falkner–Skan equation is considered for g(0) = 0.05 and
β = 0.25 and η∞ = 2 ¤
Example 5.
In this example the Falkner–Skan equation is considered for g(0) = 0.02 and
β = 0.5 and η∞ = 4 ¤
Example 6.
In this example the Falkner–Skan equation is considered for g(0) = 0.01 and
β = 0.5 and η∞ = 2 ¤
Example 7.
In this example the Falkner–Skan equation is considered for g(0) = −0.5
and β = 0.25 and η∞ = 2 ¤
Example 8.
In this example the Falkner–Skan equation is considered for g(0) = −0.25
and β = 0.5 and η∞ = 4 ¤
Example 9.
In this example the Falkner–Skan equation is considered for g(0) = −0.15
and β = 0.25 and η∞ = 4 ¤

Results of α = g′′(0) for these values are computed and are shown in
Table 1. As we see for large η∞ such as η∞ = 6 the results of VIM are
very different from the results of [2]. So the Padé approximation is used to
overcome this difficulty. Table 2 shows the value of α for η∞ = 6. The VIM
with Pade approximation can be more successful than the classic VIM.
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Table 1: Results of the variational iteration method versus the method of
[2].

g(0) η∞ β α[V IM ] α[2]
0 2 0.5 1.910511622 1.910152880
0 4 0.5 3.478838064 3.452202391
0 6 0.5 6.687805351 5.469609324

0.05 2 0.25 1.695718722 1.698115783
0.02 4 0.5 3.376351676 3.431547475
0.01 2 0.5 1.933744867 1.597446553
-0.5 2 0.25 0.701401995 0.708267207
-0.25 4 0.5 1.960524671 1.965660199
-0.15 4 0.25 1.570261336 1.522188630

Table 2: The results of the variational iteration method using Padé approx-
imation method versus the method of [2] for η∞ = 6.
g(0) η∞ β α [Padé approximation] α[2]
0 6 0.5 5.615188503 5.469609234

Moreover we define:

Rg(ξ) =
d3g

dξ3
+ η2

∞g
d2g

dξ2
+ η2

∞β[1− (
dg

dξ
)2], ξ ∈ [0, 1].

Then Figures 1 − 4 show plot of Rg for g from [VIM]. These figures show
the residual of Falkner–Skan equation in domain [0,1]. The MVIM was
implemented for Examples 2, 5 and 9 for the sake of decreasing the maximum
values of Rg, as we stated in this paper, this modification is suitable for large
values of η∞ such as η∞ ≥ 4. Figures 5− 8 compare the plot of Rg for VIM
and MVIM. These figures show MVIM is more successful than the VIM,
because of decreasing the maximum values of Rg.

Now there is a question. Which is more accurate, the new method or the
method of [2]? There is an important fact. That is: If we expand solution

Table 3: The values of Rf (η) for [VIM] versus [2] in some points of domain
for g(0) = 0,η∞ = 2,β = 0.5. Note that a(b) means a× 10−b.
Method η1 = 0.1 η2 = 0.4 η3 = 0.7 η4 = 1
[VIM] 5.5(11) 1.6103(6) 7.64624(5) 7.935513(4)

[2] 1.36(10) 1.61(6) 7.64487(5) 7.934422(4)
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Table 4: The The values of Rf (η) for [VIM] versus [2] in some points for
g(0) = 0,η∞ = 4,β = 0.5. Note that a(b) means a× 10−b.
Method η1 = 0.1 η2 = 0.4 η3 = 0.7 η4 = 1
[VIM] 1.92(10) 1.39492(6) 6.680089(5) 7.124317(4)

[2] 1.33(10) 1.46405(6) 6.991498(5) 7.893971(4)

Table 5: The values of Rf (η) for [VIM] versus [2] in some points for g(0) =
0,η∞ = 6,β = 0.5. Note that a(b) means a× 10−b.
Method η1 = 0.1 η2 = 0.4 η3 = 0.7 η4 = 1
[VIM] 8.4(11) 1.57803(6) 7.50259(5) 7.819804(4)

[2] 5.9(11) 1.53769(6) 7.3222(5) 7.671967(4)

f(η) of Falkner–Skan in a Taylor series about η = 0 then all coefficients fjs,
in the Taylor series, depend on f2 = f ′′(0)

2! = α
2η∞ . We can easily calculate

as many coefficients fj as we need. For example:

f0 = δ, f1 = 0, f2 =
α

2η∞
, f3 =

−β

6
, f4 = 0, ...

Let us truncate the series after 15 terms and assume f(η) =
∑15

j=0 fjη
j is

the exact solution of

d3f

dη3
+ f

d2f

dη2
+ β[1− (

df

dη
)2] = 0, 0<η<η∞,

subject to the boundary conditions

f(0) = δ,
df

dη
(0) = 0,

df

dη
(η∞) = 1.

Now we introduce

Rf (η) =
d3f

dη3
+ f

d2f

dη2
+ β[1− (

df

dη
)2].

Then we substitute f(η) =
∑15

j=0 fjη
j in Rf and also we substitute the

calculated α from the new method and the method of [2] in Rf separately.
Tables 3-5 show the values of Rf (η) for some η in domain [0,η∞] for VIM
and [2]. In fact these tables show the residual of Falkner–Skan equation for
some points in it’s domain for VIM and the method of [2] . These results
show that almost the accuracy of the new method and the method of [2] are
the same. This shows that the results obtained using the method presented
in the current paper are in agreement with the results of [2].
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5 Conclusion

The well-known He’s variational iteration method is a very important tool
for solving Falkner–Skan equation. Some modifications are made to find
more accurate solutions. In the He’s variational iteration method the solu-
tion of the problem can be found without discretization [20] of the variables.
Therefore, despite of some numerical procedures, instability behavior does
not exist. Generally, the present method is very efficient for finding the
solution of ordinary differential equations.
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Figure 1: Plot of the Rg(ξ) for g from VIM and η∞ = 2, β = 0.5 and
g(0) = 0 (up) and plot of the the Rg(ξ) for g from VIM and η∞ = 4, β = 0.5
and g(0) = 0 (down) using four terms of method.
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Figure 2: Plot of the the Rg(ξ) for g from VIM and η∞ = 2, β = 0.25 and
g(0) = 0.05 (up) and plot of the the Rg(ξ) for g from VIM and η∞ = 4,
β = 0.5 and g(0) = 0.02 (down) using four terms of method.
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Figure 3: Plot of the the Rg(ξ) for g from VIM and η∞ = 2, β = 0.5 and
g(0) = 0.01 (up) and plot of the the Rg(ξ) for g from VIM and η∞ = 2,
β = 0.25 and g(0) = −0.5 (down) using four terms of method.
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Figure 4: Plot of the the Rg(ξ) for g from VIM and η∞ = 4, β = 0.25
and g(0) = −0.15 (up) and Plot of the the Rg(ξ) for η∞ = 6, β = 0.5 and
g(0) = 0 using [8/8] Padé approximation and four terms of method.
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Figure 5: Plot of the Rg(ξ) for η∞ = 4, β = 0.5 and g(0) = 0 by VIM
(up)and Plot of the Rg(ξ) for η∞ = 4, β = 0.5 and g(0) = 0 by MVIM
(down) using four terms of method.
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Figure 6: Plot of the Rg(ξ) for η∞ = 4,β = 0.5 and g(0) = 0.02 by VIM
(up) and plot of the Rg(ξ) for η∞ = 4, β = 0.5 and g(0) = 0.02 by MVIM
(down) using four terms of method.
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Figure 7: Plot of the Rg(ξ) for η∞ = 4, β = 0.25 and g(0) = −0.15 by VIM
(up) and plot of the Rg(ξ) for η∞ = 4, β = 0.25 and g(0) = −0.15 by MVIM
(down) using four terms of method.
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Figure 8: Plot of the Rg(ξ) for η∞ = 4, β = 0.5 and g(0) = 0 by Padé [8/8]
(up) and plot of the Rg(ξ) for η∞ = 4, β = 0.5 and g(0) = 0.02 by Padé
[8/8] (down) using four terms of method.


